
Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 39

MODULE -3

GATE LEVEL MODELING AND DATA FLOW MODELING

3.1: Objectives

 Identify logic gate primitives provided in Verilog.

 Understand instantiation of gates, gate symbols, and truth tables for and/or and buf/not type gates.

 Understand how to construct a Verilog description from the logic diagram of the circuit.

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays

in the gate-level design

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the

implicit continuous assignment statement.

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous

assignment statements and Define expressions, operators, and operands.

 Use dataflow constructs to model practical digital circuits in Verilog

3.2 Gate Types

A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates as predefined

primitives. These primitives are instantiated like modules except that they are predefined in Verilog and do not

need a module definition. All logic circuits can be designed by using basic gates. There are two classes of basic

gates: and/or gates and buf/not gates.

3.2.1 And/Or Gates

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate terminals is

an output and the other terminals are inputs. The output of a gate is evaluated as soon as one of the inputs

changes. The and/or gates available in Verilog are: and, or, xor, nand, nor, xnor.

The corresponding logic symbols for these gates are shown in Figure 3-1. Consider the gates with two inputs.

The output terminal is denoted by out. Input terminals are denoted by i1 and i2.

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are shown

below. In Example 3-1, for all instances, OUT is connected to the output out, and IN1 and IN2 are

connected to the two inputs i1 and i2 of the gate primitives. Note that the instance name does not need to be

specified for primitives. This lets the designer instantiate hundreds of gates without giving them a name.

More than two inputs can be specified in a gate instantiation. Gates with more than two inputs are

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 40

instantiated by simply adding more input ports in the gate instantiation. Verilog automatically instantiates

the appropriate gate.

Figure 3-1. Basic Gates

Example 3-1 Gate Instantiation of And/Or Gates

wire OUT, IN1, IN2;

// basic gate instantiations.

and a1(OUT, IN1, IN2);

nand na1(OUT, IN1, IN2);

or or1(OUT, IN1, IN2);

nor nor1(OUT, IN1, IN2);

xor x1(OUT, IN1, IN2);

xnor nx1(OUT, IN1, IN2);

// More than two inputs; 3 input nand gate

nand na1_3inp(OUT, IN1, IN2, IN3);

// gate instantiation without instance name

and (OUT, IN1, IN2); // legal gate instantiation

The truth tables for these gates define how outputs for the gates are computed from the inputs. Truth tables are

defined assuming two inputs. The truth tables for these gates are shown in Table 3-1. Outputs of gates with

more than two inputs are computed by applying the truth table iteratively.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 41

Table 3-1. Truth Tables for And/Or

3.2.2 Buf/Not Gates

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in the port list is connected

to the input. Other terminals are connected to the outputs. We will discuss gates that have one input and one

output. Two basic buf/not gate primitives are provided in Verilog

buf not

The symbols for these logic gates are shown in Figure 3-2.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 42

Figure 3-2. Buf/not Gates

These gates are instantiated in Verilog as shown Example 3-2. Notice that these gates can have multiple

outputs but exactly one input, which is the last terminal in the port list.

Example 3-2 Gate Instantiations of Buf/Not Gates

// basic gate instantiations.

buf b1(OUT1, IN);

not n1(OUT1, IN);

// More than two outputs

buf b1_2out(OUT1, OUT2, IN);

// gate instantiation without instance name

not (OUT1, IN); // legal gate instantiation

Truth tables for gates with one input and one output are shown in Table 3-2.

Table 3-2. Truth Tables for Buf/Not Gates

Bufif/notif

Gates with an additional control signal on buf and not gates are also available.

bufif1 notif1

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 43

bufif0 notif0

These gates propagate only if their control signal is asserted. They propagate z if their control signal is

deasserted. Symbols for bufif/notif are shown in Figure 3-3.

Figure 3-3. Bufif/notif Gates

The truth tables for these gates are shown in Table 3-3

Table 3-3. Truth Tables for Bufif/Notif Gates

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 44

These gates are used when a signal is to be driven only when the control signal is asserted. Such a situation is

applicable when multiple drivers drive the signal. These drivers are designed to drive the signal on mutually

exclusive control signals. Example 3-3 shows examples of instantiation of bufif and notif gates.

Example 3-3 Gate Instantiations of Bufif/Notif Gates

//Instantiation of bufif gates.

bufif1 b1 (out, in, ctrl);

bufif0 b0 (out, in, ctrl);

//Instantiation of notif gates

notif1 n1 (out, in, ctrl);

notif0 n0 (out, in, ctrl);

3.2.3 Array of Instances

There are many situations when repetitive instances are required. These instances differ from each other only by

the index of the vector to which they are connected. To simplify specification of such instances, Verilog HDL

allows an array of primitive instances to be defined. Example3-4 shows an example of an array of instances.

Example 3-4 Simple Array of Primitive Instances

wire [7:0] OUT, IN1, IN2;

// basic gate instantiations.

nand n_gate[7:0](OUT, IN1, IN2);

// This is equivalent to the following 8 instantiations

nand n_gate0(OUT[0], IN1[0], IN2[0]);

nand n_gate1(OUT[1], IN1[1], IN2[1]);

nand n_gate2(OUT[2], IN1[2], IN2[2]);

nand n_gate3(OUT[3], IN1[3], IN2[3]);

nand n_gate4(OUT[4], IN1[4], IN2[4]);

nand n_gate5(OUT[5], IN1[5], IN2[5]);

nand n_gate6(OUT[6], IN1[6], IN2[6]);

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 45

nand n_gate7(OUT[7], IN1[7], IN2[7]);

3.1.4 Examples

Having understood the various types of gates available in Verilog, consider the real examples that illustrates

design of gate-level digital circuits.

Gate-level multiplexer

Consider the design of 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful purpose in logic

design. They can connect two or more sources to a single destination. They can also be used to implement

Boolean functions. We will assume for this example that signals s1 and s0 do not get the value x or z. The I/O

diagram and the truth table for the multiplexer are shown in Figure 3-4. The I/O diagram will be useful in

setting up the port list for the multiplexer.

Figure 3-4. 4-to-1 Multiplexer

Implement the logic for the multiplexer using basic logic gates. The logic diagram for the multiplexer is shown

in Figure 3-5.

Figure 3-5. Logic Diagram for Multiplexer

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 46

The logic diagram has a one-to-one correspondence with the Verilog description. The Verilog description for

the multiplexer is shown in Example 3-5. Two intermediate nets, s0n and s1n, are created; they are

complements of input signals s1 and s0. Internal nets y0, y1, y2, y3 are also required. Note that instance names

are not specified for primitive gates, not, and, and or. Instance names are optional for Verilog primitives but are

mandatory for instances of user-defined modules.

Example 3-5 Verilog Description of Multiplexer

// Module 4-to-1 multiplexer. Port list is taken exactly from

// the I/O diagram.

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

// Internal wire declarations

wire s1n, s0n;

wire y0, y1, y2, y3;

// Gate instantiations

// Create s1n and s0n signals.

not (s1n, s1);

not (s0n, s0);

// 3-input and gates instantiated

and (y0, i0, s1n, s0n);

and (y1, i1, s1n, s0);

and (y2, i2, s1, s0n);

and (y3, i3, s1, s0);

// 4-input or gate instantiated

or (out, y0, y1, y2, y3);

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 47

endmodule

This multiplexer can be tested with the stimulus shown in Example 3-6. The stimulus checks that each

combination of select signals connects the appropriate input to the output. The signal OUTPUT is displayed

one time unit after it changes. System task $monitor could also be used to display the signals when they

change values.

Example 3-6 Stimulus for Multiplexer

// Define the stimulus module (no ports)

module stimulus;

// Declare variables to be connected

// to inputs

reg IN0, IN1, IN2, IN3;

reg S1, S0;

// Declare output wire

wire OUTPUT;

// Instantiate the multiplexer

mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0);

// Stimulate the inputs

// Define the stimulus module (no ports)

initial

begin

// set input lines

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0;

#1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3);

// choose IN0

S1 = 0; S0 = 0;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN1

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 48

S1 = 0; S0 = 1;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN2

S1 = 1; S0 = 0;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

// choose IN3

S1 = 1; S0 = 1;

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT);

end

endmodule

The output of the simulation is shown below. Each combination of the select signals is tested.

IN0= 1, IN1= 0, IN2= 1, IN3= 0

S1 = 0, S0 = 0, OUTPUT = 1

S1 = 0, S0 = 1, OUTPUT = 0

S1 = 1, S0 = 0, OUTPUT = 1

S1 = 1, S0 = 1, OUTPUT = 0

4-bit Ripple Carry Full Adder

Consider the design of a 4-bit full adder whose port list was defined in, List of Ports. We use primitive

logic gates, and we apply stimulus to the 4-bit full adder to check functionality. For the sake of simplicity,

we will implement a ripple carry adder. The basic building block is a 1-bit full adder. The mathematical

equations for a 1-bit full adder are shown below.

sum = (a b cin)

cout = (a b) + cin (a b)

The logic diagram for a 1-bit full adder is shown in Figure 3-6.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 49

Figure 3-6. 1-bit Full Adder

This logic diagram for the 1-bit full adder is converted to a Verilog description, shown in Example 3-7.

Example 3-7 Verilog Description for 1-bit Full Adder

// Define a 1-bit full adder

module fulladd(sum, c_out, a, b, c_in);

// I/O port declarations

output sum, c_out;

input a, b, c_in;

// Internal nets

wire s1, c1, c2;

// Instantiate logic gate primitives

xor (s1, a, b);

and (c1, a, b);

xor (sum, s1, c_in);

and (c2, s1, c_in);

xor (c_out, c2, c1);

endmodule

A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown in Figure 3-7. Notice that

fa0, fa1, fa2, and fa3 are instances of the module fulladd (1-bit full adder).

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 50

Figure 3-7. 4-bit Ripple Carry Full Adder

This structure can be translated to Verilog as shown in Example 3-8. Note that the port names used in a 1-bit

full adder and a 4-bit full adder are the same but they represent different elements. The element sum in a 1-bit

adder is a scalar quantity and the element sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps

names local to a module.

Names are not visible outside the module unless hierarchical name referencing is used. Also note that instance

names must be specified when defined modules are instantiated, but when instantiating Verilog primitives, the

instance names are optional.

Example 3-8 Verilog Description for 4-bit Ripple Carry Full Adder

// Define a 4-bit full adder

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Internal nets

wire c1, c2, c3;

// Instantiate four 1-bit full adders.

fulladd fa0(sum[0], c1, a[0], b[0], c_in);

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 51

fulladd fa1(sum[1], c2, a[1], b[1], c1);

fulladd fa2(sum[2], c3, a[2], b[2], c2);

fulladd fa3(sum[3], c_out, a[3], b[3], c3);

endmodule

Finally, the design must be checked by applying stimulus, as shown in Example 3-9. The module stimulus

stimulates the 4-bit full adder by applying a few input combinations and monitors the results.

Example 3-9 Stimulus for 4-bit Ripple Carry Full Adder

// Define the stimulus (top level module)

module stimulus;

// Set up variables

reg [3:0] A, B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

// Instantiate the 4-bit full adder. call it FA1_4

fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN);

// Set up the monitoring for the signal values

initial

begin

$monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM= %b\n",

A, B, C_IN, C_OUT, SUM);

end

// Stimulate inputs

initial

begin

A = 4'd0; B = 4'd0; C_IN = 1'b0;

#5 A = 4'd3; B = 4'd4;

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 52

#5 A = 4'd2; B = 4'd5;

#5 A = 4'd9; B = 4'd9;

#5 A = 4'd10; B = 4'd15;

#5 A = 4'd10; B = 4'd5; C_IN = 1'b1;

end

endmodule

The output of the simulation is shown below.

0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 0000

5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 0111

10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 0111

15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 0010

20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 1001

25 A= 1010, B=0101, C_IN= 1,--- C_OUT= 1, SUM= 0000

3.3 Gate Delays

Until now, circuits are described without any delays (i.e., zero delay). In real circuits, logic gates have delays

associated with them. Gate delays allow the Verilog user to specify delays through the logic circuits. Pin-to-pin

delays can also be specified in Verilog.

3.3.1 Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate.

Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 53

Turn-off delay

The turn-off delay is associated with a gate output transition to the high impedance value (z) from another

value. If the value changes to x, the minimum of the three delays is considered.

Three types of delay specifications are allowed. If only one delay is specified, this value is used for all

transitions. If two delays are specified, they refer to the rise and fall delay values. The turn-off delay is the

minimum of the two delays. If all three delays are specified, they refer to rise, fall, and turn-off delay values. If

no delays are specified, the default value is zero. Examples of delay specification are shown in Example 3-10.

Example 3-10 Types of Delay Specification

// Delay of delay_time for all transitions

and #(delay_time) a1(out, i1, i2);

// Rise and Fall Delay Specification.

and #(rise_val, fall_val) a2(out, i1, i2);

// Rise, Fall, and Turn-off Delay Specification

bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control);

Examples of delay specification are shown below.

and #(5) a1(out, i1, i2); //Delay of 5 for all transitions

and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off= 5

3.3.2 Min/Typ/Max Values

Verilog provides an additional level of control for each type of delay mentioned above. For each type of

delay?rise, fall, and turn-off?three values, min, typ, and max, can be specified. Any one value can be chosen at

the start of the simulation. Min/typ/max values are used to model devices whose delays vary within a minimum

and maximum range because of the IC fabrication process variations.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 54

Min value

The min value is the minimum delay value that the designer expects the gate to have.

Typ val

The typ value is the typical delay value that the designer expects the gate to have.

Max value

The max value is the maximum delay value that the designer expects the gate to have. Min, typ, or max values

can be chosen at Verilog run time. Method of choosing a min/typ/max value may vary for different simulators

or operating systems. (For Verilog- XL , the values are chosen by specifying options +maxdelays, +typdelays,

and +mindelays at run time. If no option is specified, the typical delay value is the default).

This allows the designers the flexibility of building three delay values for each transition into their design. The

designer can experiment with delay values without modifying the design.

Examples of min, typ, and max value specification for Verilog-XL are shown in Example3-11.

Example 3-11 Min, Max, and Typical Delay Values

// One delay

// if +mindelays, delay= 4

// if +typdelays, delay= 5

// if +maxdelays, delay= 6

and #(4:5:6) a1(out, i1, i2);

// Two delays

// if +mindelays, rise= 3, fall= 5, turn-off = min(3,5)

// if +typdelays, rise= 4, fall= 6, turn-off = min(4,6)

// if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7)

and #(3:4:5, 5:6:7) a2(out, i1, i2);

// Three delays

// if +mindelays, rise= 2 fall= 3 turn-off = 4

// if +typdelays, rise= 3 fall= 4 turn-off = 5

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 55

// if +maxdelays, rise= 4 fall= 5 turn-off = 6

and #(2:3:4, 3:4:5, 4:5:6) a3(out, i1,i2);

Examples of invoking the Verilog-XL simulator with the command-line options are shown below. Assume that

the module with delays is declared in the file test.v.

//invoke simulation with maximum delay

> verilog test.v +maxdelays

//invoke simulation with minimum delay

> verilog test.v +mindelays

//invoke simulation with typical delay

> verilog test.v +typdelays

3.3.3 Delay Example

Let us consider a simple example to illustrate the use of gate delays to model timing in the logic circuits. A

simple module called D implements the following logic equations:

out = (a b) + c

The gate-level implementation is shown in Module D (Figure 3-8). The module contains two gates with delays

of 5 and 4 time units.

Figure 3-8. Module D

The module D is defined in Verilog as shown in Example 3-12.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 56

Example 3-12 Verilog Definition for Module D with Delay

// Define a simple combination module called D

module D (out, a, b, c);

// I/O port declarations

output out;

input a,b,c;

// Internal nets

wire e;

// Instantiate primitive gates to build the circuit

and #(5) a1(e, a, b); //Delay of 5 on gate a1

or #(4) o1(out, e,c); //Delay of 4 on gate o1

endmodule

This module is tested by the stimulus file shown in Example 3-13.

Example 3-13 Stimulus for Module D with Delay

// Stimulus (top-level module)

module stimulus;

// Declare variables

reg A, B, C;

wire OUT;

// Instantiate the module D

D d1(OUT, A, B, C);

// Stimulate the inputs. Finish the simulation at 40 time units.

initial

begin

A= 1'b0; B= 1'b0; C= 1'b0;

#10 A= 1'b1; B= 1'b1; C= 1'b1;

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 57

#10 A= 1'b1; B= 1'b0; C= 1'b0;

#20 $finish;

end

endmodule

The waveforms from the simulation are shown in Figure 3-9 to illustrate the effect of specifying delays on

gates. The waveforms are not drawn to scale. However, simulation time at each transition is specified below the

transition.

1. The outputs E and OUT are initially unknown.

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay of 4 time units and E

changes value to 1 after 5 time units.

3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and OUT transitions to 0, 4 time

units after E changes.

Figure 3-9. Waveforms for Delay Simulation of module D

It is a useful exercise to understand how the timing for each transition in the above waveform corresponds to the

gate delays shown in Module D.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 58

3.4 Dataflow Modeling

For small circuits, the gate-level modeling approach works very well because the number of gates is limited and

the designer can instantiate and connects every gate individually. Also, gate-level modeling is very intuitive to a

designer with a basic knowledge of digital logic design. However, in complex designs the number of gates is

very large. Thus, designers can design more effectively if they concentrate on implementing the function at a

level of abstraction higher than gate level. Dataflow modeling provides a powerful way to implement a design.

Verilog allows a circuit to be designed in terms of the data flow between registers and how a design processes

data rather than instantiation of individual gates.

3.4.1 Continuous Assignments

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value onto a net. This

assignment replaces gates in the description of the circuit and describes the circuit at a higher level of abstraction.

The assignment statement starts with the keyword assign. The syntax of an assign statement is as follows.

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

The default value for drive strength is strong1 and strong0. The delay value is also optional and can be used to

specify delay on the assign statement. This is like specifying delays for gates. Continuous assignments have the

following characteristics:

1. The left hand side of an assignment must always be a scalar or vector net or a concatenation of scalar and vector

nets. It cannot be a scalar or vector register.

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one of the right-

hand-side operands changes and the value is assigned to the left-hand-side net.

3. The operands on the right-hand side can be registers or nets or function calls. Registers or nets can be scalars or

vectors.

4. Delay values can be specified for assignments in terms of time units. Delay values are used to control the time

when a net is assigned the evaluated value. This feature is similar to specifying delays for gates. It is very useful in

modeling timing behavior in real circuits.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 59

Examples of continuous assignments are shown below. Operators such as &, ^, |, {, } and + used in the examples, At

this point, concentrate on how the assign statements are specified.

Example 3-14 Examples of Continuous Assignment

// Continuous assign. out is a net. i1 and i2 are nets.

assign out = i1 & i2;

// Continuous assign for vector nets. addr is a 16-bit vector net

// addr1 and addr2 are 16-bit vector registers.

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0];

// Concatenation. Left-hand side is a concatenation of a scalar

// net and a vector net.

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

3.4.2 Implicit Continuous Assignment

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a shortcut by which

a continuous assignment can be placed on a net when it is declared. There can be only one implicit declaration

assignment per net because a net is declared only once.

In the example below, an implicit continuous assignment is contrasted with a regular continuous assignment.

//Regular continuous assignment

wire out;

assign out = in1 & in2;

//Same effect is achieved by an implicit continuous assignment

wire out = in1 & in2;

Implicit Net Declaration

If a signal name is used to the left of the continuous assignment, an implicit net declaration will be inferred for that

signal name. If the net is connected to a module port, the width of the inferred net is equal to the width of the module

port.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 60

// Continuous assign. out is a net.

wire i1, i2;

assign out = i1 & i2; //Note that out was not declared as a wire

//but an implicit wire declaration for out

//is done by the simulator

3.5 Delays

Delay values control the time between the change in a right-hand-side operand and when the new value is assigned

to the left-hand side. Three ways of specifying delays in continuous assignment statements are regular assignment

delay, implicit continuous assignment delay, and net declaration delay.

3.5.1 Regular Assignment Delay

The first method is to assign a delay value in a continuous assignment statement. The delay value is specified after

the keyword assign. Any change in values of in1 or in2 will result in a delay of 10 time units before re-computation

of the expression in1 & in2, and the result will be assigned to out. If in1 or in2 changes value again before 10 time

units when the result propagates to out, the values of in1 and in2 at the time of re-computation are considered. This

property is called inertial delay. An input pulse that is shorter than the delay of the assignment statement does not

propagate to the output.

assign #10 out = in1 & in2; // Delay in a continuous assign

1. When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 30).

2. When in1 goes low at 60, out changes to low at 70.

3. However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed.

4. Hence, at the time of re-computation, 10 units after time 80, in1 is 0. Thus, out gets the value 0. A pulse of width

less than the specified assignment delay is no propagated to the output.

Figure 3-10. Waveforms for Delay Simulation

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 61

Inertial delays also apply to gate delays,

Implicit Continuous Assignment Delay

An equivalent method is to use an implicit continuous assignment to specify both a delay and an assignment on the

net.

//implicit continuous assignment delay

wire #10 out = in1 & in2;

//same as

wire out;

assign #10 out = in1 & in2;

The declaration above has the same effect as defining a wire out and declaring a continuous assignment on out.

Net Declaration Delay

A delay can be specified on a net when it is declared without putting a continuous assignment on the net. If a delay is

specified on a net out, then any value change applied to the net out is delayed accordingly. Net declaration delays

can also be used in gate-level modeling.

//Net Delays

wire # 10 out;

assign out = in1 & in2;

//The above statement has the same effect as the following.

wire out;

assign #10 out = in1 & in2;

3.5 Expressions, Operators, and Operands

Dataflow modeling describes the design in terms of expressions instead of primitive gates. Expressions, operators,

and operands form the basis of dataflow modeling.

Expressions are constructs that combine operators and operands to produce a result.

// Examples of expressions. Combines operands and operators

a ^ b

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 62

addr1[20:17] + addr2[20:17]

in1 | in2

Operands can be any one of the data types defined, Data Types. Some constructs will take only certain types of

operands. Operands can be constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector net or

a vector register), part-select (selected bits of the vector net or register vector), and memories or function calls

integer count, final_count;

final_count = count + 1;//count is an integer operand

real a, b, c;

c = a - b; //a and b are real operands

reg [15:0] reg1, reg2;

reg [3:0] reg_out;

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are

//part-select register operands

reg ret_value;

ret_value = calculate_parity(A, B);//calculate_parity is a

//function type operand

Operators

Operators act on the operands to produce desired results. Verilog provides various types of operators. Operator

Types d1 && d2 // && is an operator on operands d1 and d2.

!a[0] // ! is an operator on operand a[0]

B >> 1 // >> is an operator on operands B and 1

Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical, relational, equality, bitwise,

reduction, shift, concatenation, or conditional. Some of these operators are similar to the operators used in the C

programming language. Each operator type is denoted by a symbol. Table shows the complete listing of operator

symbols classified by category.

.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 63

Table 3-4 Operator Types and Symbols

Examples

A design can be represented in terms of gates, data flow, or a behavioral description. Consider the 4-to-1 multiplexer

and 4-bit full adder described earlier. Previously, these designs were directly translated from the logic diagram into a

gate-level Verilog description. Here, we describe the same designs in terms of data flow. We also discuss two

additional examples: a 4-bit full adder using carry look ahead and a 4-bit counter using negative edge-triggered D-

flip-flops.

4-to-1 Multiplexer

Gate-level modeling of a 4-to-1 multiplexer, Example. The logic diagram for the multiplexer is given in Figure 3.4

and the gate-level Verilog description is shown in Example. We describe the multiplexer, using dataflow statements.

Compare it with the gate-level description. We show two methods to model the multiplexer by using dataflow

statements.

Method 1: logic equation

We can use assignment statements instead of gates to model the logic equations of the multiplexer. Notice that

everything is same as the gate-level Verilog description except that computation of out is done by specifying one

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 64

logic equation by using operators instead of individual gate instantiations. I/O ports remain the same. This important

so that the interface with the environment does not change. Only the internals of the module change.

Example 4-to-1 Multiplexer, Using Logic Equations

// Module 4-to-1 multiplexer using data flow. logic equation

// Compare to gate-level model

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

//Logic equation for out

assign out = (~s1 & ~s0 & i0)|

(~s1 & s0 & i1) |

(s1 & ~s0 & i2) |

(s1 & s0 & i3) ;

endmodule

Method 2: conditional operator

There is a more concise way to specify the 4-to-1 multiplexers.

Example of 4-to-1 Multiplexer, Using Conditional Operators

// Module 4-to-1 multiplexer using data flow. Conditional operator.

// Compare to gate-level model

module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 65

// Use nested conditional operator

assign out = s1 ? (s0 ? i3 : i2) : (s0 ? i1 : i0) ;

endmodule

In the simulation of the multiplexer, the gate-level module can be substituted with the dataflow multiplexer modules

described above. The stimulus module will not change. The simulation results will be identical. By encapsulating

functionality inside a module, we can replace the gate-level module with a dataflow module without affecting the

other modules in the simulation. This is a very powerful feature of Verilog.

4 bit Full Adder

The 4-bit full adder in, Examples, was designed by using gates; the logic diagram is shown in Figure 3.7. In this

section, we write the dataflow description for the 4-bit adder. In gates, we had to first describe a 1-bit full adder.

Then we built a 4-bit full ripple carry adder. We again illustrate two methods to describe a 4-bit full adder by means

of dataflow statements.

Method 1: dataflow operators

A concise description of the adder is defined with the + and { } operators.

Example 4-bit Full Adder, Using Dataflow Operators

// Define a 4-bit full adder by using dataflow statements.

module fulladd4(sum, c_out, a, b, c_in);

// I/O port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Specify the function of a full adder

assign {c_out, sum} = a + b + c_in;

endmodule

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest of the modules will not

change. The simulation results will be identical.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 66

Method 2: full adder with carry lookahead

In ripple carry adders, the carry must propagate through the gate levels before the sum is available at the output

terminals. An n-bit ripple carry adder will have 2n gate levels. The propagation time can be a limiting factor on the

speed of the circuit. One of the most popular methods to reduce delay is to use a carry lookahead mechanism. Logic

equations for implementing the carry lookahead mechanism can be found in any logic design book. The propagation

delay is reduced to four gate levels, irrespective of the number of bits in the adder. The Verilog description for a

carry lookahead adder. This module can be substituted in place of the full adder modules described before without

changing any other component of the simulation. The simulation results will be unchanged.

Example 4-bit Full Adder with Carry Lookahead

module fulladd4(sum, c_out, a, b, c_in);

// Inputs and outputs

output [3:0] sum;

output c_out;

input [3:0] a,b;

input c_in;

// Internal wires

wire p0,g0, p1,g1, p2,g2, p3,g3;

wire c4, c3, c2, c1;

// compute the p for each stage

assign p0 = a[0] ^ b[0],

p1 = a[1] ^ b[1],

p2 = a[2] ^ b[2],

p3 = a[3] ^ b[3];

// compute the g for each stage

assign g0 = a[0] & b[0],

g1 = a[1] & b[1],

g2 = a[2] & b[2],

g3 = a[3] & b[3];

// compute the carry for each stage

// Note that c_in is equivalent c0 in the arithmetic equation for

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 67

// carry lookahead computation

assign c1 = g0 | (p0 & c_in),

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in),

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in),

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) |

(p3 & p2 & p1 & p0 & c_in);

// Compute Sum

assign sum[0] = p0 ^ c_in,

sum[1] = p1 ^ c1,

sum[2] = p2 ^ c2,

sum[3] = p3 ^ c3;

// Assign carry output

assign c_out = c4;

endmodule

Ripple Counter

Consider the design of a 4-bit ripple counter by using negative edge-triggered flipflops. This example was discussed

at a very abstract level, Hierarchical Modeling Concepts. We design it using Verilog dataflow statements and test it

with a stimulus module. The diagrams for the 4-bit ripple carry counter modules are show the counter being built

with four T-flipflops.

Figure 3.11 4 bit ripple counter

.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 68

Figure 3.12 T-flipflop is built with one D-flipflop and an inverter gate

Figure 3.13 shows the D-flipflop constructed from basic logic gates.

Figure 3.13 Negative Edge-Triggered D-flipflop with Clear

Given the above diagrams, we write the corresponding Verilog, using dataflow statements in a top-down fashion.

First we design the module counter. The code is shown in. The code contains instantiation of four T_FF modules.

Example: Verilog Code for Ripple Counter

// Ripple counter

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 69

module counter(Q , clock, clear);

// I/O ports

output [3:0] Q;

input clock, clear;

// Instantiate the T flipflops

T_FF tff0(Q[0], clock, clear);

T_FF tff1(Q[1], Q[0], clear);

T_FF tff2(Q[2], Q[1], clear);

T_FF tff3(Q[3], Q[2], clear);

endmodule

Example :Verilog Code for T-flipflop

// Edge-triggered T-flipflop. Toggles every clock

// cycle.

module T_FF(q, clk, clear);

// I/O ports

output q;

input clk, clear;

// Instantiate the edge-triggered DFF

// Complement of output q is fed back.

// Notice qbar not needed. Unconnected port.

edge_dff ff1(q, ,~q, clk, clear);

endmodule

Verilog Code for Edge-Triggered D-flipflop

// Edge-triggered D flipflop

module edge_dff(q, qbar, d, clk, clear);

// Inputs and outputs

output q,qbar;

input d, clk, clear;

// Internal variables

wire s, sbar, r, rbar,cbar;

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 70

// dataflow statements

//Create a complement of signal clear

assign cbar = ~clear;

// Input latches; A latch is level sensitive. An edge-sensitive

// flip-flop is implemented by using 3 SR latches.

assign sbar = ~(rbar & s),

s = ~(sbar & cbar & ~clk),

r = ~(rbar & ~clk & s),

rbar = ~(r & cbar & d);

// Output latch

assign q = ~(s & qbar),

qbar = ~(q & r & cbar);

endmodule

Stimulus Module for Ripple Counter

// Top level stimulus module

module stimulus;

// Declare variables for stimulating input

reg CLOCK, CLEAR;

wire [3:0] Q;

initial

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR);

// Instantiate the design block counter

counter c1(Q, CLOCK, CLEAR);

// Stimulate the Clear Signal

initial

begin

CLEAR = 1'b1;

#34 CLEAR = 1'b0;

#200 CLEAR = 1'b1;

#50 CLEAR = 1'b0;

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 71

end

// Set up the clock to toggle every 10 time units

initial

begin

CLOCK = 1'b0;

forever #10 CLOCK = ~CLOCK;

end

// Finish the simulation at time 400

initial

begin

#400 $finish;

end

endmodule

The output of the simulation is shown below. Note that the clear signal resets the count

to zero.

0 Count Q = 0000 Clear= 1

34 Count Q = 0000 Clear= 0

40 Count Q = 0001 Clear= 0

60 Count Q = 0010 Clear= 0

80 Count Q = 0011 Clear= 0

100 Count Q = 0100 Clear= 0

120 Count Q = 0101 Clear= 0

140 Count Q = 0110 Clear= 0

160 Count Q = 0111 Clear= 0

180 Count Q = 1000 Clear= 0

200 Count Q = 1001 Clear= 0

220 Count Q = 1010 Clear= 0

234 Count Q = 0000 Clear= 1

284 Count Q = 0000 Clear= 0

300 Count Q = 0001 Clear= 0

320 Count Q = 0010 Clear= 0

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 72

340 Count Q = 0011 Clear= 0

360 Count Q = 0100 Clear= 0

380 Count Q = 0101 Clear= 0

3.6: Outcomes

After completion of the module the students are able to:

 Identify logic gate primitives provided in Verilog and Understand instantiation of gates, gate

symbols, and truth tables for and/or and buf/not type gates.

 Understand how to construct a Verilog description from the logic diagram of the circuit.

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays

in the gate-level design

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the

implicit continuous assignment statement.

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous

assignment statements and Define expressions, operators, and operands.

 Use dataflow constructs to model practical digital circuits in Verilog

3.7: Recommended questions

1. Write the truth table of all the basic gates. Input values consisting of ‘0’, ‘1’, ‘x’, ‘z’.

2. What are the primitive gates supported by Verilog HDL? Write the Verilog HDL statements to

instantiate all the primitive gates.

3. Use gate level description of Verilog HDL to design 4 to 1 multiplexer. Write truth table, top-level

block, logic expression and logic diagram. Also write the stimulus block for the same.

4. Explain the different types of buffers and not gates with the help of truth table, logic symbol, logic

expression

5. Use gate level description of Verilog HDL to describe the 4-bit ripple carry counter. Also write a

stimulus block for 4-bit ripple carry adder.

6. How to model the delays of a logic gate using Verilog HDL? Give examples. Also explain the

different delays associated with digital circuits.

7. Write gate level description to implement function y = a.b + c, with 5 and 4 time units of gate delay for

AND and OR gate respectively. Also write the stimulus block and simulation waveform.

8. With syntax describe the continuous assignment statement.

Verilog HDL [15EC53]

Dept.of ECE/ATMECE, Mysuru Page 73

9. Show how different delays associated with logic circuit are modelled using dataflow description.

10. Explain different operators supported by Verilog HDL.

11. What is an expression associated with dataflow description? What are the different types of operands

in an expression?

12. Discuss the precedence of operators.

13. Use dataflow description style of Verilog HDL to design 4:1 multiplexer with and without using

conditional operator.

14. Use dataflow description style of Verilog HDL to design 4-bitadder

using i. Ripple carry logic.

ii. Carry look ahead logic.

15. Use dataflow description style, gate level description of Verilog HDL to design 4-bit ripple carry

counter. Also write the stimulus block to verify the same.

