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MODULE -3 

GATE LEVEL MODELING AND DATA FLOW MODELING 

3.1: Objectives 

 Identify logic gate primitives provided in Verilog. 

 Understand instantiation of gates, gate symbols, and truth tables for and/or and buf/not type gates. 

 Understand how to construct a Verilog description from the logic diagram of the circuit. 

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays 

in the gate-level design 

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the 

implicit continuous assignment statement. 

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous 

assignment statements and Define expressions, operators, and operands. 

 Use dataflow constructs to model practical digital circuits in Verilog 

3.2 Gate Types 

A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates as predefined 

primitives. These primitives are instantiated like modules except that they are predefined in Verilog and do not 

need a module definition. All logic circuits can be designed by using basic gates. There are two classes of basic 

gates: and/or gates and buf/not gates. 

3.2.1 And/Or Gates 

And/or gates have one scalar output and multiple scalar inputs. The first terminal in the list of gate terminals is 

an output and the other terminals are inputs. The output of a gate is evaluated as soon as one of the inputs 

changes. The and/or gates available in Verilog are: and, or, xor, nand, nor, xnor. 

The corresponding logic symbols for these gates are shown in Figure 3-1. Consider the gates with two inputs. 

The output terminal is denoted by out. Input terminals are denoted by i1 and i2. 

These gates are instantiated to build logic circuits in Verilog. Examples of gate instantiations are shown 

below. In Example 3-1, for all instances, OUT is connected to the output out, and IN1 and IN2 are 

connected to the two inputs i1 and i2 of the gate primitives. Note that the instance name does not need to be 

specified for primitives. This lets the designer instantiate hundreds of gates without giving them a name. 

More than two inputs can be specified in a gate instantiation. Gates with more than two inputs are 
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instantiated by simply adding more input ports in the gate instantiation. Verilog automatically instantiates 

the appropriate gate. 

 

Figure 3-1. Basic Gates 

Example 3-1 Gate Instantiation of And/Or Gates 

wire OUT, IN1, IN2; 

// basic gate instantiations. 

and a1(OUT, IN1, IN2); 

nand na1(OUT, IN1, IN2); 

or or1(OUT, IN1, IN2); 

nor nor1(OUT, IN1, IN2); 

xor x1(OUT, IN1, IN2); 

xnor nx1(OUT, IN1, IN2); 

// More than two inputs; 3 input nand gate 

nand na1_3inp(OUT, IN1, IN2, IN3); 

// gate instantiation without instance name 

and (OUT, IN1, IN2); // legal gate instantiation 

 

The truth tables for these gates define how outputs for the gates are computed from the inputs. Truth tables are 

defined assuming two inputs. The truth tables for these gates are shown in Table 3-1. Outputs of gates with 

more than two inputs are computed by applying the truth table iteratively. 
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Table 3-1. Truth Tables for And/Or 

 

 

 

3.2.2 Buf/Not Gates 

Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in the port list is connected 

to the input. Other terminals are connected to the outputs. We will discuss gates that have one input and one 

output. Two basic buf/not gate primitives are provided in Verilog   

buf  not 

The symbols for these logic gates are shown in Figure 3-2. 
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Figure 3-2. Buf/not Gates 

These gates are instantiated in Verilog as shown Example 3-2. Notice that these gates can have multiple 

outputs but exactly one input, which is the last terminal in the port list. 

Example 3-2 Gate Instantiations of Buf/Not Gates 

// basic gate instantiations. 

buf b1(OUT1, IN); 

not n1(OUT1, IN); 

// More than two outputs 

buf b1_2out(OUT1, OUT2, IN); 

// gate instantiation without instance name 

not (OUT1, IN); // legal gate instantiation 

Truth tables for gates with one input and one output are shown in Table 3-2. 

Table 3-2. Truth Tables for Buf/Not Gates 

 

Bufif/notif 

Gates with an additional control signal on buf and not gates are also available. 

bufif1 notif1 
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bufif0 notif0 

These gates propagate only if their control signal is asserted. They propagate z if their control signal is 

deasserted. Symbols for bufif/notif are shown in Figure 3-3. 

 

Figure 3-3. Bufif/notif Gates 

The truth tables for these gates are shown in Table 3-3 

Table 3-3. Truth Tables for Bufif/Notif Gates 
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These gates are used when a signal is to be driven only when the control signal is asserted. Such a situation is 

applicable when multiple drivers drive the signal. These drivers are designed to drive the signal on mutually 

exclusive control signals. Example 3-3 shows examples of instantiation of bufif and notif gates. 

Example 3-3 Gate Instantiations of Bufif/Notif Gates 

//Instantiation of bufif gates. 

bufif1 b1 (out, in, ctrl); 

bufif0 b0 (out, in, ctrl); 

//Instantiation of notif gates 

notif1 n1 (out, in, ctrl); 

notif0 n0 (out, in, ctrl); 

3.2.3 Array of Instances 

There are many situations when repetitive instances are required. These instances differ from each other only by 

the index of the vector to which they are connected. To simplify specification of such instances, Verilog HDL 

allows an array of primitive instances to be defined. Example3-4 shows an example of an array of instances. 

Example 3-4 Simple Array of Primitive Instances 

wire [7:0] OUT, IN1, IN2; 

// basic gate instantiations. 

nand n_gate[7:0](OUT, IN1, IN2); 

// This is equivalent to the following 8 instantiations 

nand n_gate0(OUT[0], IN1[0], IN2[0]); 

nand n_gate1(OUT[1], IN1[1], IN2[1]); 

nand n_gate2(OUT[2], IN1[2], IN2[2]); 

nand n_gate3(OUT[3], IN1[3], IN2[3]); 

nand n_gate4(OUT[4], IN1[4], IN2[4]); 

nand n_gate5(OUT[5], IN1[5], IN2[5]); 

nand n_gate6(OUT[6], IN1[6], IN2[6]); 
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nand n_gate7(OUT[7], IN1[7], IN2[7]); 

3.1.4 Examples 

Having understood the various types of gates available in Verilog, consider the real examples that illustrates 

design of gate-level digital circuits. 

Gate-level multiplexer 

Consider the design of 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful purpose in logic 

design. They can connect two or more sources to a single destination. They can also be used to implement 

Boolean functions. We will assume for this example that signals s1 and s0 do not get the value x or z. The I/O 

diagram and the truth table for the multiplexer are shown in Figure 3-4. The I/O diagram will be useful in 

setting up the port list for the multiplexer. 

 

Figure 3-4. 4-to-1 Multiplexer 

Implement the logic for the multiplexer using basic logic gates. The logic diagram for the multiplexer is shown 

in Figure 3-5. 

 

Figure 3-5. Logic Diagram for Multiplexer 
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The logic diagram has a one-to-one correspondence with the Verilog description. The Verilog description for 

the multiplexer is shown in Example 3-5. Two intermediate nets, s0n and s1n, are created; they are 

complements of input signals s1 and s0. Internal nets y0, y1, y2, y3 are also required. Note that instance names 

are not specified for primitive gates, not, and, and or. Instance names are optional for Verilog primitives but are 

mandatory for instances of user-defined modules. 

Example 3-5 Verilog Description of Multiplexer 

// Module 4-to-1 multiplexer. Port list is taken exactly from 

// the I/O diagram. 

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 

// Internal wire declarations 

wire s1n, s0n; 

wire y0, y1, y2, y3; 

// Gate instantiations 

// Create s1n and s0n signals. 

not (s1n, s1); 

not (s0n, s0); 

// 3-input and gates instantiated 

and (y0, i0, s1n, s0n); 

and (y1, i1, s1n, s0); 

and (y2, i2, s1, s0n); 

and (y3, i3, s1, s0); 

// 4-input or gate instantiated 

or (out, y0, y1, y2, y3); 
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endmodule 

This multiplexer can be tested with the stimulus shown in Example 3-6. The stimulus checks that each 

combination of select signals connects the appropriate input to the output. The signal OUTPUT is displayed 

one time unit after it changes. System task $monitor could also be used to display the signals when they 

change values. 

Example 3-6 Stimulus for Multiplexer 

// Define the stimulus module (no ports) 

module stimulus; 

// Declare variables to be connected 

// to inputs 

reg IN0, IN1, IN2, IN3; 

reg S1, S0; 

// Declare output wire 

wire OUTPUT; 

// Instantiate the multiplexer 

mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0); 

// Stimulate the inputs 

// Define the stimulus module (no ports) 

initial 

begin 

// set input lines 

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0; 

#1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3); 

// choose IN0 

S1 = 0; S0 = 0; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN1 
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S1 = 0; S0 = 1; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN2 

S1 = 1; S0 = 0; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

// choose IN3 

S1 = 1; S0 = 1; 

#1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 

end 

endmodule 

The output of the simulation is shown below. Each combination of the select signals is tested. 

IN0= 1, IN1= 0, IN2= 1, IN3= 0 

S1 = 0, S0 = 0, OUTPUT = 1 

S1 = 0, S0 = 1, OUTPUT = 0 

S1 = 1, S0 = 0, OUTPUT = 1 

S1 = 1, S0 = 1, OUTPUT = 0 

4-bit Ripple Carry Full Adder 

Consider the design of  a 4-bit full adder whose port list was defined in, List of Ports. We use primitive 

logic gates, and we apply stimulus to the 4-bit full adder to check functionality. For the sake of simplicity, 

we will implement a ripple carry adder. The basic building block is a 1-bit full adder. The mathematical 

equations for a 1-bit full adder are shown below. 

sum = (a b cin) 

cout = (a b) + cin (a b) 

The logic diagram for a 1-bit full adder is shown in Figure 3-6. 
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Figure 3-6. 1-bit Full Adder 

This logic diagram for the 1-bit full adder is converted to a Verilog description, shown in Example 3-7. 

Example 3-7 Verilog Description for 1-bit Full Adder 

// Define a 1-bit full adder 

module fulladd(sum, c_out, a, b, c_in); 

// I/O port declarations 

output sum, c_out; 

input a, b, c_in; 

// Internal nets 

wire s1, c1, c2; 

// Instantiate logic gate primitives 

xor (s1, a, b); 

and (c1, a, b); 

xor (sum, s1, c_in); 

and (c2, s1, c_in); 

xor (c_out, c2, c1); 

endmodule 

A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown in Figure 3-7. Notice that 

fa0, fa1, fa2, and fa3 are instances of the module fulladd (1-bit full adder). 
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Figure 3-7. 4-bit Ripple Carry Full Adder  

This structure can be translated to Verilog as shown in Example 3-8. Note that the port names used in a 1-bit 

full adder and a 4-bit full adder are the same but they represent different elements. The element sum in a 1-bit 

adder is a scalar quantity and the element sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps 

names local to a module.  

Names are not visible outside the module unless hierarchical name referencing is used. Also note that instance 

names must be specified when defined modules are instantiated, but when instantiating Verilog primitives, the 

instance names are optional. 

Example 3-8 Verilog Description for 4-bit Ripple Carry Full Adder 

// Define a 4-bit full adder 

module fulladd4(sum, c_out, a, b, c_in); 

// I/O port declarations 

output [3:0] sum; 

output c_out; 

input[3:0] a, b; 

input c_in; 

// Internal nets 

wire c1, c2, c3; 

// Instantiate four 1-bit full adders. 

fulladd fa0(sum[0], c1, a[0], b[0], c_in); 
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fulladd fa1(sum[1], c2, a[1], b[1], c1); 

fulladd fa2(sum[2], c3, a[2], b[2], c2); 

fulladd fa3(sum[3], c_out, a[3], b[3], c3); 

endmodule 

Finally, the design must be checked by applying stimulus, as shown in Example 3-9. The module stimulus 

stimulates the 4-bit full adder by applying a few input combinations and monitors the results. 

Example 3-9 Stimulus for 4-bit Ripple Carry Full Adder 

// Define the stimulus (top level module) 

module stimulus; 

// Set up variables 

reg [3:0] A, B; 

reg C_IN; 

wire [3:0] SUM; 

wire C_OUT; 

// Instantiate the 4-bit full adder. call it FA1_4 

fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN); 

// Set up the monitoring for the signal values 

initial 

begin 

$monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM= %b\n", 

A, B, C_IN, C_OUT, SUM); 

end 

// Stimulate inputs 

initial 

begin 

A = 4'd0; B = 4'd0; C_IN = 1'b0; 

#5 A = 4'd3; B = 4'd4; 
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#5 A = 4'd2; B = 4'd5; 

#5 A = 4'd9; B = 4'd9; 

#5 A = 4'd10; B = 4'd15; 

#5 A = 4'd10; B = 4'd5; C_IN = 1'b1; 

end 

endmodule 

The output of the simulation is shown below. 

0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 0000 

5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 0111 

10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 0111 

15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 0010 

20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 1001 

25 A= 1010, B=0101, C_IN= 1,--- C_OUT= 1, SUM= 0000 

3.3 Gate Delays 

Until now, circuits are described without any delays (i.e., zero delay). In real circuits, logic gates have delays 

associated with them. Gate delays allow the Verilog user to specify delays through the logic circuits. Pin-to-pin 

delays can also be specified in Verilog.  

3.3.1 Rise, Fall, and Turn-off Delays 

There are three types of delays from the inputs to the output of a primitive gate.  

Rise delay 

The rise delay is associated with a gate output transition to a 1 from another value. 

 

Fall delay 

The fall delay is associated with a gate output transition to a 0 from another value. 
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Turn-off delay 

The turn-off delay is associated with a gate output transition to the high impedance value (z) from another 

value. If the value changes to x, the minimum of the three delays is considered. 

Three types of delay specifications are allowed. If only one delay is specified, this value is used for all 

transitions. If two delays are specified, they refer to the rise and fall delay values. The turn-off delay is the 

minimum of the two delays. If all three delays are specified, they refer to rise, fall, and turn-off delay values. If 

no delays are specified, the default value is zero. Examples of delay specification are shown in Example 3-10. 

Example 3-10 Types of Delay Specification 

// Delay of delay_time for all transitions 

and #(delay_time) a1(out, i1, i2); 

// Rise and Fall Delay Specification. 

and #(rise_val, fall_val) a2(out, i1, i2); 

// Rise, Fall, and Turn-off Delay Specification 

bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control); 

Examples of delay specification are shown below. 

and #(5) a1(out, i1, i2); //Delay of 5 for all transitions 

and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6 

bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off= 5 

3.3.2 Min/Typ/Max Values 

Verilog provides an additional level of control for each type of delay mentioned above. For each type of 

delay?rise, fall, and turn-off?three values, min, typ, and max, can be specified. Any one value can be chosen at 

the start of the simulation. Min/typ/max values are used to model devices whose delays vary within a minimum 

and maximum range because of the IC fabrication process variations. 
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Min value 

The min value is the minimum delay value that the designer expects the gate to have. 

Typ val 

The typ value is the typical delay value that the designer expects the gate to have. 

Max value 

The max value is the maximum delay value that the designer expects the gate to have. Min, typ, or max values 

can be chosen at Verilog run time. Method of choosing a min/typ/max value may vary for different simulators 

or operating systems. (For Verilog- XL , the values are chosen by specifying options +maxdelays, +typdelays, 

and +mindelays at run time. If no option is specified, the typical delay value is the default).  

This allows the designers the flexibility of building three delay values for each transition into their design. The 

designer can experiment with delay values without modifying the design. 

Examples of min, typ, and max value specification for Verilog-XL are shown in Example3-11. 

Example 3-11 Min, Max, and Typical Delay Values 

// One delay 

// if +mindelays, delay= 4 

// if +typdelays, delay= 5 

// if +maxdelays, delay= 6 

and #(4:5:6) a1(out, i1, i2); 

// Two delays 

// if +mindelays, rise= 3, fall= 5, turn-off = min(3,5) 

// if +typdelays, rise= 4, fall= 6, turn-off = min(4,6) 

// if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7) 

and #(3:4:5, 5:6:7) a2(out, i1, i2); 

// Three delays 

// if +mindelays, rise= 2 fall= 3 turn-off = 4 

// if +typdelays, rise= 3 fall= 4 turn-off = 5 
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// if +maxdelays, rise= 4 fall= 5 turn-off = 6 

and #(2:3:4, 3:4:5, 4:5:6) a3(out, i1,i2); 

Examples of invoking the Verilog-XL simulator with the command-line options are shown below. Assume that 

the module with delays is declared in the file test.v. 

//invoke simulation with maximum delay 

> verilog test.v +maxdelays 

//invoke simulation with minimum delay 

> verilog test.v +mindelays 

//invoke simulation with typical delay 

> verilog test.v +typdelays 

3.3.3 Delay Example 

Let us consider a simple example to illustrate the use of gate delays to model timing in the logic circuits. A 

simple module called D implements the following logic equations: 

out = (a b) + c 

The gate-level implementation is shown in Module D (Figure 3-8). The module contains two gates with delays 

of 5 and 4 time units. 

 

Figure 3-8. Module D 

The module D is defined in Verilog as shown in Example 3-12. 
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Example 3-12 Verilog Definition for Module D with Delay 

// Define a simple combination module called D 

module D (out, a, b, c); 

// I/O port declarations 

output out; 

input a,b,c; 

// Internal nets 

wire e; 

// Instantiate primitive gates to build the circuit 

and #(5) a1(e, a, b); //Delay of 5 on gate a1 

or #(4) o1(out, e,c); //Delay of 4 on gate o1 

endmodule 

This module is tested by the stimulus file shown in Example 3-13. 

Example 3-13 Stimulus for Module D with Delay 

// Stimulus (top-level module) 

module stimulus; 

// Declare variables 

reg A, B, C; 

wire OUT; 

// Instantiate the module D 

D d1( OUT, A, B, C); 

// Stimulate the inputs. Finish the simulation at 40 time units. 

initial 

begin 

A= 1'b0; B= 1'b0; C= 1'b0; 

#10 A= 1'b1; B= 1'b1; C= 1'b1; 
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#10 A= 1'b1; B= 1'b0; C= 1'b0; 

#20 $finish; 

end 

endmodule 

The waveforms from the simulation are shown in Figure 3-9 to illustrate the effect of specifying delays on 

gates. The waveforms are not drawn to scale. However, simulation time at each transition is specified below the 

transition. 

1. The outputs E and OUT are initially unknown. 

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay of 4 time units and E 

changes value to 1 after 5 time units. 

3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and OUT transitions to 0, 4 time 

units after E changes. 

 

Figure 3-9. Waveforms for Delay Simulation of module D 

It is a useful exercise to understand how the timing for each transition in the above waveform corresponds to the 

gate delays shown in Module D. 

 

 



Verilog HDL [15EC53] 
 
  

 

Dept.of ECE/ATMECE, Mysuru Page 58 
 
 

3.4 Dataflow Modeling 

For small circuits, the gate-level modeling approach works very well because the number of gates is limited and 

the designer can instantiate and connects every gate individually. Also, gate-level modeling is very intuitive to a 

designer with a basic knowledge of digital logic design. However, in complex designs the number of gates is 

very large. Thus, designers can design more effectively if they concentrate on implementing the function at a 

level of abstraction higher than gate level. Dataflow modeling provides a powerful way to implement a design. 

Verilog allows a circuit to be designed in terms of the data flow between registers and how a design processes 

data rather than instantiation of individual gates.  

3.4.1 Continuous Assignments 

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value onto a net. This 

assignment replaces gates in the description of the circuit and describes the circuit at a higher level of abstraction. 

The assignment statement starts with the keyword assign. The syntax of an assign statement is as follows. 

continuous_assign ::= assign [ drive_strength ] [ delay3 ] list_of_net_assignments ; 

list_of_net_assignments ::= net_assignment { , net_assignment } 

net_assignment ::= net_lvalue = expression 

The default value for drive strength is strong1 and strong0. The delay value is also optional and can be used to 

specify delay on the assign statement. This is like specifying delays for gates. Continuous assignments have the 

following characteristics: 

1. The left hand side of an assignment must always be a scalar or vector net or a concatenation of scalar and vector 

nets. It cannot be a scalar or vector register.  

2. Continuous assignments are always active. The assignment expression is evaluated as soon as one of the right-

hand-side operands changes and the value is assigned to the left-hand-side net. 

3. The operands on the right-hand side can be registers or nets or function calls. Registers or nets can be scalars or 

vectors. 

4. Delay values can be specified for assignments in terms of time units. Delay values are used to control the time 

when a net is assigned the evaluated value. This feature is similar to specifying delays for gates. It is very useful in 

modeling timing behavior in real circuits. 
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Examples of continuous assignments are shown below. Operators such as &, ^, |, {, } and + used in the examples, At 

this point, concentrate on how the assign statements are specified. 

Example 3-14 Examples of Continuous Assignment 

// Continuous assign. out is a net. i1 and i2 are nets. 

assign out = i1 & i2; 

// Continuous assign for vector nets. addr is a 16-bit vector net 

// addr1 and addr2 are 16-bit vector registers. 

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0]; 

// Concatenation. Left-hand side is a concatenation of a scalar 

// net and a vector net. 

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in; 

 

3.4.2 Implicit Continuous Assignment 

Instead of declaring a net and then writing a continuous assignment on the net, Verilog provides a shortcut by which 

a continuous assignment can be placed on a net when it is declared. There can be only one implicit declaration 

assignment per net because a net is declared only once. 

In the example below, an implicit continuous assignment is contrasted with a regular continuous assignment. 

//Regular continuous assignment 

wire out; 

assign out = in1 & in2; 

//Same effect is achieved by an implicit continuous assignment 

wire out = in1 & in2; 

Implicit Net Declaration 

If a signal name is used to the left of the continuous assignment, an implicit net declaration will be inferred for that 

signal name. If the net is connected to a module port, the width of the inferred net is equal to the width of the module 

port. 
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// Continuous assign. out is a net. 

wire i1, i2; 

assign out = i1 & i2; //Note that out was not declared as a wire 

//but an implicit wire declaration for out 

//is done by the simulator 

3.5 Delays 

Delay values control the time between the change in a right-hand-side operand and when the new value is assigned 

to the left-hand side. Three ways of specifying delays in continuous assignment statements are regular assignment 

delay, implicit continuous assignment delay, and net declaration delay. 

3.5.1 Regular Assignment Delay 

The first method is to assign a delay value in a continuous assignment statement. The delay value is specified after 

the keyword assign. Any change in values of in1 or in2 will result in a delay of 10 time units before re-computation 

of the expression in1 & in2, and the result will be assigned to out. If in1 or in2 changes value again before 10 time 

units when the result propagates to out, the values of in1 and in2 at the time of re-computation are considered. This 

property is called inertial delay. An input pulse that is shorter than the delay of the assignment statement does not 

propagate to the output. 

assign #10 out = in1 & in2; // Delay in a continuous assign 

1. When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 30). 

2. When in1 goes low at 60, out changes to low at 70. 

3. However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed. 

4. Hence, at the time of re-computation, 10 units after time 80, in1 is 0. Thus, out gets the value 0. A pulse of width 

less than the specified assignment delay is no propagated to the output. 

 

Figure 3-10. Waveforms for Delay Simulation 
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Inertial delays also apply to gate delays,  

Implicit Continuous Assignment Delay 

An equivalent method is to use an implicit continuous assignment to specify both a delay and an assignment on the 

net. 

//implicit continuous assignment delay 

wire #10 out = in1 & in2; 

//same as 

wire out; 

assign #10 out = in1 & in2; 

The declaration above has the same effect as defining a wire out and declaring a continuous assignment on out. 

Net Declaration Delay 

A delay can be specified on a net when it is declared without putting a continuous assignment on the net. If a delay is 

specified on a net out, then any value change applied to the net out is delayed accordingly. Net declaration delays 

can also be used in gate-level modeling. 

//Net Delays 

wire # 10 out; 

assign out = in1 & in2; 

//The above statement has the same effect as the following. 

wire out; 

assign #10 out = in1 & in2; 

3.5 Expressions, Operators, and Operands 

Dataflow modeling describes the design in terms of expressions instead of primitive gates. Expressions, operators, 

and operands form the basis of dataflow modeling. 

Expressions are constructs that combine operators and operands to produce a result. 

// Examples of expressions. Combines operands and operators 

a ^ b 
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addr1[20:17] + addr2[20:17] 

in1 | in2 

Operands can be any one of the data types defined, Data Types. Some constructs will take only certain types of 

operands. Operands can be constants, integers, real numbers, nets, registers, times, bit-select (one bit of vector net or 

a vector register), part-select (selected bits of the vector net or register vector), and memories or function calls  

integer count, final_count; 

final_count = count + 1;//count is an integer operand 

real a, b, c; 

c = a - b; //a and b are real operands 

reg [15:0] reg1, reg2; 

reg [3:0] reg_out; 

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are 

//part-select register operands 

reg ret_value; 

ret_value = calculate_parity(A, B);//calculate_parity is a 

//function type operand 

Operators 

Operators act on the operands to produce desired results. Verilog provides various types of operators. Operator 

Types d1 && d2 // && is an operator on operands d1 and d2. 

!a[0] // ! is an operator on operand a[0] 

B >> 1 // >> is an operator on operands B and 1 

Operator Types 

Verilog provides many different operator types. Operators can be arithmetic, logical, relational, equality, bitwise, 

reduction, shift, concatenation, or conditional. Some of these operators are similar to the operators used in the C 

programming language. Each operator type is denoted by a symbol. Table shows the complete listing of operator 

symbols classified by category. 

. 



Verilog HDL [15EC53] 
 
  

 

Dept.of ECE/ATMECE, Mysuru Page 63 
 
 

Table 3-4 Operator Types and Symbols 

  

Examples 

A design can be represented in terms of gates, data flow, or a behavioral description. Consider the 4-to-1 multiplexer 

and 4-bit full adder described earlier. Previously, these designs were directly translated from the logic diagram into a 

gate-level Verilog description. Here, we describe the same designs in terms of data flow. We also discuss two 

additional examples: a 4-bit full adder using carry look ahead and a 4-bit counter using negative edge-triggered D-

flip-flops. 

4-to-1 Multiplexer 

Gate-level modeling of a 4-to-1 multiplexer, Example. The logic diagram for the multiplexer is given in Figure 3.4 

and the gate-level Verilog description is shown in Example. We describe the multiplexer, using dataflow statements. 

Compare it with the gate-level description. We show two methods to model the multiplexer by using dataflow 

statements. 

Method 1: logic equation 

We can use assignment statements instead of gates to model the logic equations of the multiplexer. Notice that 

everything is same as the gate-level Verilog description except that computation of out is done by specifying one 
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logic equation by using operators instead of individual gate instantiations. I/O ports remain the same. This important 

so that the interface with the environment does not change. Only the internals of the module change.  

Example 4-to-1 Multiplexer, Using Logic Equations 

// Module 4-to-1 multiplexer using data flow. logic equation 

// Compare to gate-level model 

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 

//Logic equation for out 

assign out = (~s1 & ~s0 & i0)| 

(~s1 & s0 & i1) | 

(s1 & ~s0 & i2) | 

(s1 & s0 & i3) ; 

endmodule 

Method 2: conditional operator 

There is a more concise way to specify the 4-to-1 multiplexers.  

Example of 4-to-1 Multiplexer, Using Conditional Operators 

// Module 4-to-1 multiplexer using data flow. Conditional operator. 

// Compare to gate-level model 

module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0); 

// Port declarations from the I/O diagram 

output out; 

input i0, i1, i2, i3; 

input s1, s0; 
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// Use nested conditional operator 

assign out = s1 ? ( s0 ? i3 : i2) : (s0 ? i1 : i0) ; 

endmodule 

In the simulation of the multiplexer, the gate-level module can be substituted with the dataflow multiplexer modules 

described above. The stimulus module will not change. The simulation results will be identical. By encapsulating 

functionality inside a module, we can replace the gate-level module with a dataflow module without affecting the 

other modules in the simulation. This is a very powerful feature of Verilog. 

4 bit Full Adder 

The 4-bit full adder in, Examples, was designed by using gates; the logic diagram is shown in Figure 3.7. In this 

section, we write the dataflow description for the 4-bit adder. In gates, we had to first describe a 1-bit full adder. 

Then we built a 4-bit full ripple carry adder. We again illustrate two methods to describe a 4-bit full adder by means 

of dataflow statements. 

Method 1: dataflow operators 

A concise description of the adder is defined with the + and { } operators. 

Example 4-bit Full Adder, Using Dataflow Operators 

// Define a 4-bit full adder by using dataflow statements. 

module fulladd4(sum, c_out, a, b, c_in); 

// I/O port declarations 

output [3:0] sum; 

output c_out; 

input[3:0] a, b; 

input c_in; 

// Specify the function of a full adder 

assign {c_out, sum} = a + b + c_in; 

endmodule 

If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest of the modules will not 

change. The simulation results will be identical. 
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Method 2: full adder with carry lookahead 

In ripple carry adders, the carry must propagate through the gate levels before the sum is available at the output 

terminals. An n-bit ripple carry adder will have 2n gate levels. The propagation time can be a limiting factor on the 

speed of the circuit. One of the most popular methods to reduce delay is to use a carry lookahead mechanism. Logic 

equations for implementing the carry lookahead mechanism can be found in any logic design book. The propagation 

delay is reduced to four gate levels, irrespective of the number of bits in the adder. The Verilog description for a 

carry lookahead adder. This module can be substituted in place of the full adder modules described before without 

changing any other component of the simulation. The simulation results will be unchanged. 

Example 4-bit Full Adder with Carry Lookahead 

module fulladd4(sum, c_out, a, b, c_in); 

// Inputs and outputs 

output [3:0] sum; 

output c_out; 

input [3:0] a,b; 

input c_in; 

// Internal wires 

wire p0,g0, p1,g1, p2,g2, p3,g3; 

wire c4, c3, c2, c1; 

// compute the p for each stage 

assign p0 = a[0] ^ b[0], 

p1 = a[1] ^ b[1], 

p2 = a[2] ^ b[2], 

p3 = a[3] ^ b[3]; 

// compute the g for each stage 

assign g0 = a[0] & b[0], 

g1 = a[1] & b[1], 

g2 = a[2] & b[2], 

g3 = a[3] & b[3]; 

// compute the carry for each stage 

// Note that c_in is equivalent c0 in the arithmetic equation for 
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// carry lookahead computation 

assign c1 = g0 | (p0 & c_in), 

c2 = g1 | (p1 & g0) | (p1 & p0 & c_in), 

c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in), 

c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | 

(p3 & p2 & p1 & p0 & c_in); 

// Compute Sum 

assign sum[0] = p0 ^ c_in, 

sum[1] = p1 ^ c1, 

sum[2] = p2 ^ c2, 

sum[3] = p3 ^ c3; 

// Assign carry output 

assign c_out = c4; 

endmodule 

Ripple Counter 

Consider the design of a 4-bit ripple counter by using negative edge-triggered flipflops. This example was discussed 

at a very abstract level, Hierarchical Modeling Concepts. We design it using Verilog dataflow statements and test it 

with a stimulus module. The diagrams for the 4-bit ripple carry counter modules are show the counter being built 

with four T-flipflops. 

 

Figure 3.11 4 bit ripple counter 

. 
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Figure 3.12  T-flipflop is built with one D-flipflop and an inverter gate 

 

Figure 3.13 shows the D-flipflop constructed from basic logic gates. 

 

Figure 3.13  Negative Edge-Triggered D-flipflop with Clear  

Given the above diagrams, we write the corresponding Verilog, using dataflow statements in a top-down fashion. 

First we design the module counter. The code is shown in. The code contains instantiation of four T_FF modules. 

Example: Verilog Code for Ripple Counter 

// Ripple counter 
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module counter(Q , clock, clear); 

// I/O ports 

output [3:0] Q; 

input clock, clear; 

// Instantiate the T flipflops 

T_FF tff0(Q[0], clock, clear); 

T_FF tff1(Q[1], Q[0], clear); 

T_FF tff2(Q[2], Q[1], clear); 

T_FF tff3(Q[3], Q[2], clear); 

endmodule 

Example :Verilog Code for T-flipflop 

// Edge-triggered T-flipflop. Toggles every clock 

// cycle. 

module T_FF(q, clk, clear); 

// I/O ports 

output q; 

input clk, clear; 

// Instantiate the edge-triggered DFF 

// Complement of output q is fed back. 

// Notice qbar not needed. Unconnected port. 

edge_dff ff1(q, ,~q, clk, clear); 

endmodule 

Verilog Code for Edge-Triggered D-flipflop 

// Edge-triggered D flipflop 

module edge_dff(q, qbar, d, clk, clear); 

// Inputs and outputs 

output q,qbar; 

input d, clk, clear; 

// Internal variables 

wire s, sbar, r, rbar,cbar; 
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// dataflow statements 

//Create a complement of signal clear 

assign cbar = ~clear; 

// Input latches; A latch is level sensitive. An edge-sensitive 

// flip-flop is implemented by using 3 SR latches. 

assign sbar = ~(rbar & s), 

s = ~(sbar & cbar & ~clk), 

r = ~(rbar & ~clk & s), 

rbar = ~(r & cbar & d); 

// Output latch 

assign q = ~(s & qbar), 

qbar = ~(q & r & cbar); 

endmodule 

Stimulus Module for Ripple Counter 

// Top level stimulus module 

module stimulus; 

// Declare variables for stimulating input 

reg CLOCK, CLEAR; 

wire [3:0] Q; 

initial 

$monitor($time, " Count Q = %b Clear= %b", Q[3:0],CLEAR); 

// Instantiate the design block counter 

counter c1(Q, CLOCK, CLEAR); 

// Stimulate the Clear Signal 

initial 

begin 

CLEAR = 1'b1; 

#34 CLEAR = 1'b0; 

#200 CLEAR = 1'b1; 

#50 CLEAR = 1'b0; 
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end 

// Set up the clock to toggle every 10 time units 

initial 

begin 

CLOCK = 1'b0; 

forever #10 CLOCK = ~CLOCK; 

end 

// Finish the simulation at time 400 

initial 

begin 

#400 $finish; 

end 

endmodule 

The output of the simulation is shown below. Note that the clear signal resets the count 

to zero. 

0 Count Q = 0000 Clear= 1 

34 Count Q = 0000 Clear= 0 

40 Count Q = 0001 Clear= 0 

60 Count Q = 0010 Clear= 0 

80 Count Q = 0011 Clear= 0 

100 Count Q = 0100 Clear= 0 

120 Count Q = 0101 Clear= 0 

140 Count Q = 0110 Clear= 0 

160 Count Q = 0111 Clear= 0 

180 Count Q = 1000 Clear= 0 

200 Count Q = 1001 Clear= 0 

220 Count Q = 1010 Clear= 0 

234 Count Q = 0000 Clear= 1 

284 Count Q = 0000 Clear= 0 

300 Count Q = 0001 Clear= 0 

320 Count Q = 0010 Clear= 0 
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340 Count Q = 0011 Clear= 0 

360 Count Q = 0100 Clear= 0 

380 Count Q = 0101 Clear= 0 

3.6: Outcomes 
 

After completion of the module the students are able to: 

 

 Identify logic gate primitives provided in Verilog and Understand instantiation of gates, gate 

symbols, and truth tables for and/or and buf/not type gates. 

 Understand how to construct a Verilog description from the logic diagram of the circuit. 

 Describe rise, fall, and turn-off delays in the gate-level design and Explain min, max, and typ delays 

in the gate-level design 

 Describe the continuous assignment (assign) statement, restrictions on the assign statement, and the 

implicit continuous assignment statement. 

 Explain assignment delay, implicit assignment delay, and net declaration delay for continuous 

assignment statements and Define expressions, operators, and operands. 

 Use dataflow constructs to model practical digital circuits in Verilog 

 

3.7:  Recommended questions  

 
1.   Write the truth table of all the basic gates. Input values consisting of ‘0’, ‘1’, ‘x’, ‘z’. 

2.  What are the primitive gates supported by Verilog HDL? Write the Verilog HDL statements to 

instantiate all the primitive gates. 

3.  Use gate level description of Verilog HDL to design 4 to 1 multiplexer. Write truth table, top-level 

block, logic expression and logic diagram. Also write the stimulus block for the same. 

4.  Explain the different types of buffers and not gates with the help of truth table, logic symbol, logic 

expression 

5.  Use gate level description of Verilog HDL to describe the 4-bit ripple carry counter. Also write a 

stimulus block for 4-bit ripple carry adder. 

6. How to model the delays of a logic gate using Verilog HDL? Give examples. Also explain the 

different delays associated with digital circuits. 

7.  Write gate level description to implement function y = a.b + c, with 5 and 4 time units of gate delay for 

AND and OR gate respectively. Also write the stimulus block and simulation waveform. 

8.  With syntax describe the continuous assignment statement. 
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9.  Show how different delays associated with logic circuit are modelled using dataflow description. 

10. Explain different operators supported by Verilog HDL. 

11. What is an expression associated with dataflow description? What are the different types of operands 

in an expression? 

12. Discuss the precedence of operators. 

13. Use dataflow description style of Verilog HDL to design 4:1 multiplexer with and without using 

conditional operator. 

14. Use dataflow description style of Verilog HDL to design 4-bitadder 

using i.   Ripple carry logic. 

ii.   Carry look ahead logic. 

15. Use dataflow description style, gate level description of Verilog HDL to design 4-bit ripple carry 

counter. Also write the stimulus block to verify the same. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 


